3.124 \(\int \frac{1}{(a+a \sec (c+d x)) \sqrt{e \sin (c+d x)}} \, dx\)

Optimal. Leaf size=101 \[ \frac{4 \sqrt{\sin (c+d x)} \text{EllipticF}\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right ),2\right )}{3 a d \sqrt{e \sin (c+d x)}}-\frac{2 e}{3 a d (e \sin (c+d x))^{3/2}}+\frac{2 e \cos (c+d x)}{3 a d (e \sin (c+d x))^{3/2}} \]

[Out]

(-2*e)/(3*a*d*(e*Sin[c + d*x])^(3/2)) + (2*e*Cos[c + d*x])/(3*a*d*(e*Sin[c + d*x])^(3/2)) + (4*EllipticF[(c -
Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*a*d*Sqrt[e*Sin[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.211353, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3872, 2839, 2564, 30, 2567, 2642, 2641} \[ -\frac{2 e}{3 a d (e \sin (c+d x))^{3/2}}+\frac{2 e \cos (c+d x)}{3 a d (e \sin (c+d x))^{3/2}}+\frac{4 \sqrt{\sin (c+d x)} F\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right )}{3 a d \sqrt{e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sec[c + d*x])*Sqrt[e*Sin[c + d*x]]),x]

[Out]

(-2*e)/(3*a*d*(e*Sin[c + d*x])^(3/2)) + (2*e*Cos[c + d*x])/(3*a*d*(e*Sin[c + d*x])^(3/2)) + (4*EllipticF[(c -
Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*a*d*Sqrt[e*Sin[c + d*x]])

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2567

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[e +
 f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1))/(b*f*(n + 1)), x] + Dist[(a^2*(m - 1))/(b^2*(n + 1)), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sec (c+d x)) \sqrt{e \sin (c+d x)}} \, dx &=-\int \frac{\cos (c+d x)}{(-a-a \cos (c+d x)) \sqrt{e \sin (c+d x)}} \, dx\\ &=\frac{e^2 \int \frac{\cos (c+d x)}{(e \sin (c+d x))^{5/2}} \, dx}{a}-\frac{e^2 \int \frac{\cos ^2(c+d x)}{(e \sin (c+d x))^{5/2}} \, dx}{a}\\ &=\frac{2 e \cos (c+d x)}{3 a d (e \sin (c+d x))^{3/2}}+\frac{2 \int \frac{1}{\sqrt{e \sin (c+d x)}} \, dx}{3 a}+\frac{e \operatorname{Subst}\left (\int \frac{1}{x^{5/2}} \, dx,x,e \sin (c+d x)\right )}{a d}\\ &=-\frac{2 e}{3 a d (e \sin (c+d x))^{3/2}}+\frac{2 e \cos (c+d x)}{3 a d (e \sin (c+d x))^{3/2}}+\frac{\left (2 \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\sin (c+d x)}} \, dx}{3 a \sqrt{e \sin (c+d x)}}\\ &=-\frac{2 e}{3 a d (e \sin (c+d x))^{3/2}}+\frac{2 e \cos (c+d x)}{3 a d (e \sin (c+d x))^{3/2}}+\frac{4 F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 a d \sqrt{e \sin (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.528417, size = 77, normalized size = 0.76 \[ \frac{2 \cot \left (\frac{1}{2} (c+d x)\right ) \left (-2 \sin ^{\frac{3}{2}}(c+d x) \text{EllipticF}\left (\frac{1}{4} (-2 c-2 d x+\pi ),2\right )+\cos (c+d x)-1\right )}{3 a d (\cos (c+d x)+1) \sqrt{e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sec[c + d*x])*Sqrt[e*Sin[c + d*x]]),x]

[Out]

(2*Cot[(c + d*x)/2]*(-1 + Cos[c + d*x] - 2*EllipticF[(-2*c + Pi - 2*d*x)/4, 2]*Sin[c + d*x]^(3/2)))/(3*a*d*(1
+ Cos[c + d*x])*Sqrt[e*Sin[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 1.324, size = 121, normalized size = 1.2 \begin{align*}{\frac{1}{d} \left ( -{\frac{2\,e}{3\,a} \left ( e\sin \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}}-{\frac{2}{3\,a \left ( \sin \left ( dx+c \right ) \right ) ^{2}\cos \left ( dx+c \right ) } \left ( \sqrt{-\sin \left ( dx+c \right ) +1}\sqrt{2+2\,\sin \left ( dx+c \right ) } \left ( \sin \left ( dx+c \right ) \right ) ^{{\frac{5}{2}}}{\it EllipticF} \left ( \sqrt{-\sin \left ( dx+c \right ) +1},{\frac{\sqrt{2}}{2}} \right ) + \left ( \sin \left ( dx+c \right ) \right ) ^{3}-\sin \left ( dx+c \right ) \right ){\frac{1}{\sqrt{e\sin \left ( dx+c \right ) }}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x)

[Out]

(-2/3/a*e/(e*sin(d*x+c))^(3/2)-2/3*((-sin(d*x+c)+1)^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(5/2)*EllipticF((-
sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+sin(d*x+c)^3-sin(d*x+c))/a/sin(d*x+c)^2/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e \sin \left (d x + c\right )}}{{\left (a e \sec \left (d x + c\right ) + a e\right )} \sin \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*sin(d*x + c))/((a*e*sec(d*x + c) + a*e)*sin(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{1}{\sqrt{e \sin{\left (c + d x \right )}} \sec{\left (c + d x \right )} + \sqrt{e \sin{\left (c + d x \right )}}}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))/(e*sin(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*sin(c + d*x))*sec(c + d*x) + sqrt(e*sin(c + d*x))), x)/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt{e \sin \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)*sqrt(e*sin(d*x + c))), x)